Microbial community dynamics alleviate stoichiometric constraints during litter decay

نویسندگان

  • Christina Kaiser
  • Oskar Franklin
  • Ulf Dieckmann
  • Andreas Richter
چکیده

Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances—Results from Analytical Stoichiometric Models

Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE). Here, a hie...

متن کامل

Field and lab conditions alter microbial enzyme and biomass dynamics driving decomposition of the same leaf litter

Fluctuations in climate and edaphic factors influence field decomposition rates and preclude a complete understanding of how microbial communities respond to plant litter quality. In contrast, laboratory microcosms isolate the intrinsic effects of litter chemistry and microbial community from extrinsic effects of environmental variation. Used together, these paired approaches provide mechanisti...

متن کامل

Interactions between leaf litter quality, particle size, and microbial community during the earliest stage of decay

With global change expected to alter aspects of the carbon (C) cycle, empirical data describing how microorganisms function in different environmental conditions are needed to increase predictive capabilities of microbially-driven decomposition models. Given the importance of accelerated C fluxes during early decay in C cycling, we characterized how varying litter qualities (maple vs. oak) and ...

متن کامل

Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an Alpine elevation gradient: Decay and nutrient release

Litter decomposition is an important process for cycling of nutrients in terrestrial ecosystems. The objective of this study was to evaluate direct and indirect effects of climate on litter decomposition along an altitudinal gradient in a temperate Alpine region. Foliar litter of European beech (Fagus sylvatica) and Black pine (Pinus nigra) was incubated in litterbags during two years in the Ho...

متن کامل

Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate.

Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later-arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2014